Let $f:[a, b] \rightarrow[m, m]$ where
$a, b, m, M \in \mathbb{R}$ with $a<b, m<M$ ．
Consider an（＂interval＂）puntion P of $[a, b]$ （ $P \in$ par $[a, b]$ in symbol）

$$
\begin{aligned}
P: & =\left\{a=x_{0} \leqslant x_{1} \leqslant \cdots \leqslant x_{n-1} \leqslant x_{n}=b\right\} \\
& =\left\{I_{1}, I_{2}, \cdots, I_{n}\right\} \quad \text { (abuse of notations) }
\end{aligned}
$$

where $I_{i}:\left[x_{i-1}, x_{i}\right] \quad(i=1,2, \cdots, n)$ ．The upper／lower Riemann sums of f w．v．t P are defined by

$$
\begin{aligned}
& U(f ; p):=\sum_{i=1}^{n} M_{i} \cdot l\left(I_{i}\right)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right) \\
& \mu(f ; p):=\sum_{i=1}^{n} m_{i} \cdot l\left(I_{i}\right)=\sum_{i=1}^{n} m_{i} \cdot\left(x_{i} \cdot x_{i-1}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{i}==\sup \left\{f(x): x \in I_{i}\right\} \\
& m_{i}:=\min \{\cdots, \cdots i=1,2, \cdots, n .
\end{aligned}
$$

The uppew／lower Riemann integrals of $f(o n[a, b])$ are defined by（最大下界
最小上界, respectively)

$$
\begin{aligned}
& \int_{a}^{b} f:=\inf \{U(f ; P): p \in \operatorname{pw}[a, b]\} \\
& \int_{-a}^{b} f:=\sup \{n(f ; p): \ldots . .\}
\end{aligned}
$$

(or use (R) $\int_{a}^{b} f,(R) \int_{-a}^{b} f$ when we need to compare/emphazise the approaches of Riemann/Lebesgne).

Hos.
(i) $u(f ; p) \leqslant U(f ; p) \quad \forall p \in \operatorname{par}[a, b]$;
(ii) $m(b-a) \leqslant u(f ; p) \leqslant \int_{a}^{b} f \leqslant \int_{c}^{b} f \leqslant U(f ; p) \leqslant M(b-a)$.

$$
\forall p \in \operatorname{pow}[a, b] .
$$

(iii) $u(f ; p) \uparrow_{p}$:

$$
\begin{array}{r}
u(f ; P) \leqslant u\left(f ; P^{\prime}\right) \\
\forall P \subseteq P^{\prime}
\end{array}
$$

(iv) $U(f ; p) \downarrow_{P_{.,}}$
(v) $u(f ;-P) \leqslant u(f ; Q) \quad \forall P, Q \in \operatorname{\phi ar}[a, b]$
(Hint: Look at $P \cup Q$)
and $\leq f \leqslant J_{f}$
(vi) If $P \in P^{\prime}$ with $P^{\prime}, P=\left\{x^{\prime}\right\}$, say

$$
\begin{aligned}
x_{i-1} & <x^{\prime}<x_{i}>m_{i}^{\prime} \ell\left(I_{i}^{\prime}\right)+m_{i}^{\prime \prime} l\left(I_{i}^{\prime \prime}\right) \\
& -m_{i} \cdot l\left(I_{i}\right)
\end{aligned}
$$

then

$$
-m_{L} \cdot l\left(I_{L}\right)
$$

$$
0 \leqslant u\left(f ; P^{\prime}\right)-u(f ; p) \leqslant(M-m)\|P\|
$$

where $\|p\|==\max \left\{\ell\left(I_{i}\right): \dot{i}=1,2, \ldots n\right.$

$$
\begin{aligned}
d \quad P & =\left\{I_{i}=i=1,2, \cdots, n\right\}=\left\{x_{i}: i=0,1, n, n\right\} \\
\left(i \& \cdot\|P\|_{:}\right. & \left.=\max \left\{x_{i}-x_{l-1}=i=1,2, \ldots n\right\}\right)
\end{aligned}
$$

(vii) If $P \subseteq P^{\prime}$ with $\#\left(P^{\prime}, P\right)=N(\epsilon N)$
then $0 \leqslant n\left(f ; P^{\prime}\right)-n(f ; p) \leqslant N(M-m)\|P\|$
d

$$
\begin{gathered}
0 \leqslant U(f ; P)-U\left(f ; P^{\prime}\right) \leqslant N_{\varepsilon}(M-m)\|P\| \\
P \cup P_{\varepsilon} .
\end{gathered}
$$

Whit for (vi). $I_{i}=\left[x_{i-1}, x_{i}\right]=\left[x_{i-1}, x^{\prime}\right] \cup\left[x^{\prime}, x_{i}\right]$

$$
\begin{aligned}
& m_{1}^{\prime}=\operatorname{m} f\left\{f(x): x \in I_{1} \cdot\right\} \\
& m_{1}^{\prime}==\dot{m} f\left\{f(x): x \in I_{i}^{\prime}\right\} \\
& m_{i}^{\prime \prime}=\operatorname{mf}\left\{f(x): x \in I_{i}^{\prime \prime}\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
u\left(f ; P^{\prime}\right)-n(f ; P) & =m_{i}^{\prime} \cdot l\left(I_{i}^{\prime}\right)+m_{i}^{\prime \prime} l\left(I_{i}^{\prime \prime}\right)-m_{i} \cdot l\left(I_{i}\right) \\
& \leqslant M\left(l\left(I_{i}^{\prime}\right)+l\left(I_{i}^{\prime \prime}\right)-m l\left(I_{i}\right)\right. \\
& =M l\left(I_{i}^{\prime}\right)-m l\left(I_{\cdot}\right)=(M-m) l\left(I_{i}\right) \\
& \leqslant(M-m) /\|P\|
\end{aligned}
$$

(viii) $\int f:=\sup _{P \in D_{v}[a, b]} u(f ; P)=\lim _{P \in \notin \sim[(a, b]} u(f ; P)$
and $\bar{\int} f:=\operatorname{lin}_{p \in \text { Partan }]} U(f ; p)=\lim _{p} U(f ; P)$
(by defuichin)
Hit: Froth and line, we hove to show that: $\forall \varepsilon>0, \exists P_{\varepsilon} \in \operatorname{par}[a, \phi]$ s.t.
(*) $\left|\int f-U(f ; P)\right|<\varepsilon, \forall$ patin $P \supseteq P_{\varepsilon}$.

To do this, let $\varepsilon>0$. Then, by def, $\exists P_{\varepsilon} \in P_{a r}[a, b]$ s.t.

$$
U\left(f ; P_{\varepsilon}\right)<J f+\varepsilon
$$

$d \operatorname{def}$ of $\bar{J} f$
Then, $\forall \operatorname{Par}[a, b] \ngtr P \supseteq P_{\varepsilon}$ one has, by $(i v)$,

$$
\overline{J f} \leqslant U(f ; p) \leqslant U\left(f ; p_{\varepsilon}\right)<\bar{\int} f+\varepsilon
$$

so (*) holst.

$$
\begin{aligned}
\left.(i x)^{*}\right] \bar{J} f & =\lim _{\|p\| \rightarrow 0} u(f ; p) \& \\
-f & =\lim _{\|p\| \rightarrow 0} u(f ; p)
\end{aligned}
$$

Hair:
For the cst line, let $\varepsilon>0$ i. It suffices to show that $\exists \delta>0$ such "that
(**)

$$
\left|U(f ; P), J_{f}\right|<2 \varepsilon, \forall P P \in P_{\text {av }}\left[[, b]_{\text {with }}\|P\|<\delta\right.
$$

To do this, let $\varepsilon>0$ and take $P_{\varepsilon, ~ a s b e f o r e: ~}^{\text {and }}$ Let $N_{s}={ }^{\#}\left(P_{\varepsilon}\right)$ and let $\delta>0$ be s.t.

$$
\text { (\#) } \quad N_{i}(M-m) \delta<\varepsilon
$$

Let $P \in \operatorname{Par}^{[a, 2]}$ with $\|P\|<\delta$. Then,

$$
\begin{aligned}
& \text { by (vii) (applied to P, PuP } P_{\varepsilon} \text { hiplace of } \\
& \begin{array}{l}
\bar{\int} f+\varepsilon>U\left(f ; P_{\varepsilon}\right) \geqslant U\left(f ; P \cup P_{\varepsilon}\right) \geqslant U(f ; P)-N_{\varepsilon}^{(i v)}(M-n) \cdot\|P\| \\
\text { because }\left(\left(P \cup P P_{\varepsilon}\right) \backslash P\right) \leqslant \#\left(P_{\varepsilon}\right)=N_{\varepsilon}
\end{array} \\
& \text { because }\left(\left(P \cup P_{\varepsilon}\right) \backslash P\right) \leqslant \#\left(P_{\varepsilon}\right)=N_{\varepsilon} \quad \uparrow \quad U(f ; P)_{-N_{2}(M-m)} \quad \delta \\
& \text { mydeff Jj } U(f ; P)-\varepsilon \text {. } \\
& \text { b } \downarrow \text { by (\#). } \\
& \therefore \quad \int f+2 \varepsilon>M(f ; p) \geqslant \bar{\int} d \\
& \left|u(f ; p)-\overline{J_{f}}\right|<2 \varepsilon,
\end{aligned}
$$

valid for all P with $\|P\|<\delta$.
$(x)^{*}$ Let $\beta[a, b]$ consist of all bounded renl-valued funtim on $[a, b]$. Then, $\forall f, g \in \beta[a, b]$,

$$
\begin{aligned}
& J(f+g) \leqslant \int f+\int g \\
& S(f+g) \geqslant \leq f+J g \\
& -\int f=J(-f) \propto \bar{J}(f f)=c \bar{J} f, f(x f)=c \leq f \forall c \geqslant 0 .
\end{aligned}
$$

If $\int_{f} f=\Gamma f$ then sari $f \in R[a, b] d S f:=\underline{J} f=J f$. By defricions and (x), one hays: $f \mapsto \int f$ wheriear, monotone and $\int f=\int f^{\prime}$ if $f=f^{\prime}$ on $[a, b] \backslash A$ win, $\#(A) \in \mathbb{N}$.
tit for (x) : $\operatorname{Fr}(1), \operatorname{lut} \varepsilon>0$. Then $\exists P, Q \in \operatorname{par}[a, b]$ s.t

$$
\begin{aligned}
& U(f ; P)<\int f+\varepsilon \\
& U\left(g ; P^{\prime}\right)<\bar{\int} g+\varepsilon
\end{aligned}
$$

and 90

$$
\begin{aligned}
U\left(f ; p \cup p^{\prime}\right) \leqslant U(f ; p) & <\bar{\int} f+\varepsilon d \\
U\left(g ; p \cup p^{\prime}\right) & <\bar{\int} g+\varepsilon
\end{aligned}
$$

Consequently $\downarrow^{\text {pl.check ria } ~} \Delta$-req

$$
\begin{aligned}
U\left(f+g=P \cup p^{\prime}\right) & \leqslant U\left(f ; P \cup p^{\prime}\right)+U\left(g ; p \cup p^{\prime}\right) \\
\bar{J}(f+g) & \leqslant \bar{v}+\bar{J} g+2 \varepsilon
\end{aligned}
$$

and $\bar{S}(f+g) \leqslant \bar{\int} f+\int g$ as $\varepsilon>0$ antribrary.

Below si a revisit of

$$
J f=\lim _{P(p \operatorname{pan}\{a, b]} U(f, p)=\lim _{\|p\| \rightarrow 0} U(f, p)
$$

d

$$
\int_{-} f=\lim _{p \in p a w[a, b]} u(f, p)=\lim _{\|p\| \rightarrow 0} u(f, p)
$$

with the definitions of limits:

$$
l=\lim u(f, p) \text { means : } \forall \varepsilon>0, \exists
$$

$p \in p \sim[a, b]$
$P_{\varepsilon} \in \operatorname{par}[a, b]$ s.t. if $P \in \operatorname{par}[a, b]$ with $P \supseteq P_{\varepsilon}$
then $|u(f, p)-l|<\varepsilon$.

$$
\begin{aligned}
& \left.l=\lim _{\|p\| \rightarrow 0} u(f p) \text { mean }\right): \forall \varepsilon>0 \\
& \exists \delta>0 \text { sir. if } p \in \operatorname{pan}[a, b] \text { with } \\
& \|\rho\|<\delta \text { then } \\
& \quad|u(f, p)-l|<\varepsilon .
\end{aligned}
$$

Let $\varepsilon>0$ ．Sine $\int f=\inf \{U(f, P): p \in \operatorname{par}[a, b]\}$
= 最大下界,

$$
\begin{aligned}
& \int f+\varepsilon>U\left(f, P_{\varepsilon}\right) \text { for some } P_{\varepsilon} \in \operatorname{par}[a, b] \\
& \text { so } \int f+\varepsilon>U\left(f, P_{\varepsilon}\right) \geqslant U(f, P) \forall P^{\nu} \supseteq P_{\varepsilon} \\
& \geqslant J f
\end{aligned}
$$

showing that $\lim _{P} U(f, P)=\bar{f}$ bydefg $\lim _{P}$
Fruther，let $N_{\varepsilon}:=\#\left(\right.$ partition pts of $\left.P_{\varepsilon}\right)$ and
let $\delta:=\frac{\varepsilon}{N_{\varepsilon} \cdot(M-m)}(>0)$ ，where $\underset{(w i t h ~}{f}:[a, b] \rightarrow[m, M] \subseteq \mathbb{R}$
Then，$\forall P \in p w[a, b]$ with $\|P\|<\delta$ ，one has

$$
\begin{aligned}
& \int f+\varepsilon>U\left(f, P_{\varepsilon}\right) \geqslant U\left(f, P \cup P_{\varepsilon}\right) \\
& >U(P)-N_{\varepsilon}(M-m)\|P\| \\
& >U(P)-N_{\varepsilon}(M-m) \delta \\
& \left(\begin{array}{l}
\text { see Lemma beyond } \\
\text { applied } \\
\text { a } \\
\text { OP }
\end{array}\right. \\
& { }_{1 \text { In place of } P \text { P }} \\
& \bar{J} f+2 \varepsilon>u(p) \geqslant \bar{\int} f,
\end{aligned}
$$

showing that

$$
|U(P)-J f|<2 \varepsilon \text {, valid }
$$

for all $P \in \operatorname{par}[a, b]$ with $\|P\|<\delta$.

$$
\therefore \lim _{\|p\| \rightarrow 0} U(p)=\bar{J} f
$$

Lemma. Let partitions $P^{\prime} \geq P$

$$
\begin{aligned}
& \text { s.t. } \#\left(P^{\prime} \backslash P\right)=N \in \mathbb{N} \text {. Then } \\
& 0 \leqslant U(P)-U\left(P^{\prime}\right) \leqslant N(M-m)\|P\|
\end{aligned}
$$

Proof of Lemma. By MI., it suffices to show for the case when $N=1$. To do thin, let us repeat the standard notation for pantilin P :

$$
\begin{aligned}
P & =\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b\right\} \\
& =\left\{I_{1}, I_{2}, \cdots, I_{n}\right\} \text {, abuse of notahmi }
\end{aligned}
$$

Let $P^{\prime}=P \cup\left\{x^{\prime}\right\}$ ，say

$$
x^{\prime} \in \operatorname{int}\left(I_{j}\right) \quad x_{j-1}<x^{\prime}<x_{j}
$$

so $I_{j}=I_{j}^{\prime} \cup I_{j}^{\prime \prime}$ where $I_{j}^{\prime}=\left[x_{j-1}, x^{\prime}\right]$

$$
\begin{array}{cc}
I_{j}^{\prime \prime}= & {\left[x^{\prime}, x_{j}\right]} \\
M_{j^{\prime}}^{\prime}:=\max \left\{f(x): x \in I_{j}^{\prime}\right\} \\
M_{j}^{\prime \prime}:=\max \left\{f(x): x \in I_{j}^{\prime \prime}\right\}
\end{array} \quad M_{j}=\max \left\{f(x): x \in I_{j}\right\}
$$

Note thar

$$
\begin{aligned}
& U(f, P)-U\left(f, P_{v}\left\{x^{\prime}\right\}\right) \quad \text { interval 長度 } \\
& =M_{j} \cdot l\left(I_{j}\right)-\left(M_{j}^{\prime} l\left(I_{j}^{\prime}\right)+M_{j}^{\prime \prime} \cdot l\left(I_{j}^{\prime \prime}\right)\right) \\
& \leqslant M \cdot l\left(I_{j}\right)-\left(m \cdot l\left(I_{j}^{\prime}\right)+m \cdot l\left(I_{j}^{\prime \prime}\right)\right) \\
& =(M-m) \ell\left(I_{j}\right) \leqslant(M-m)\|P\|,
\end{aligned}
$$

proving the lemma for $N=1$ ．

Remark. Simulaubs for $\int_{-} f$ and $u(f, p)$: $0 \leq u\left(f, p \cup\left\{x^{\prime}\right\}\right)-u(f, p) \quad\left(x_{j-1}<x^{\prime}<x_{j}\right)$

$$
\begin{aligned}
& =\left(m_{j}^{\prime} l\left(I_{j}^{\prime}\right)+m_{j}^{\prime \prime} \ell\left(I_{j}^{\prime \prime}\right)\right)-m_{j} l\left(I_{j}\right) \\
& =\left(m_{j}^{\prime} \ell\left(I_{j}^{\prime}\right)+m_{j}^{\prime \prime} \ell\left(I_{j}^{\prime \prime}\right)\right)-\left(m_{j} l\left(I_{j}^{\prime}\right)+m_{j} \ell\left(I_{j}^{\prime \prime}\right)\right) \\
& \leqslant(M-m) \ell\left(I_{j}\right) \leqslant(M-m)\|P\| .
\end{aligned}
$$

(so $\left.f \delta \leqslant f \leqslant f^{\delta}\right)$.

$$
\left.\begin{array}{lll}
f \delta \uparrow & f^{\delta} \downarrow & (\text { as } \\
\delta \downarrow
\end{array}\right)
$$

(by bisector process)
Note. Take, iteratively, a seq $\left(P_{n}\right)$ of partilous of $[0,1]$ s.t.

$$
\left.\begin{array}{rlrl}
P_{n} & \subseteq P_{n+1} & \forall n \in \mathbb{N} \\
\left\|P_{n}\right\| & \leqslant \frac{1}{2^{n}} & \forall n \in \mathbb{N} \\
\text { (so } \lim _{n} u\left(f ; P_{n}\right) & =\int f, & u\left(f ; P_{n}\right) \downarrow_{n} \\
\lim _{n} u\left(f ; P_{n}\right) & =\int_{-} f & u\left(f ; P_{n}\right) T_{n}
\end{array}\right)
$$

Let $P_{n}=\left\{I_{1}^{(n)}, I_{2}^{(n)}, \cdots I_{k}^{(n)}\right\}$ and take two step pachons $\varphi_{n}, \psi_{n}:[0,1] \rightarrow[m, M]$ s.t. $\varphi_{n} \leqslant f \leqslant \psi_{n}$ such that $\forall i=1,2 ;-k$, $\varphi_{n}=m_{i}$ onint $\left(T_{i}^{(n)}\right)$ interior $\cup_{n}=M_{1}$. on int $I^{(n)}$)
(say $\varphi_{n}=m$ at all partition pouts of P_{n}

$$
\psi_{n}=m_{1}-----\quad-\quad
$$

Then $\left.\begin{array}{rl}\int \varphi_{n} & =w\left(f ; P_{n}\right) \\ & \int \psi_{n}\end{array}=U\left(f ; P_{n}\right) \quad\right)$
Mil. Let

$$
X:=\left[0, \square \backslash\left\{\frac{k}{2^{n}}: n \in \mathbb{N}, k=0,1, \cdots, 2^{n}\right\}\right.
$$

Then

$$
\varphi_{n} \uparrow \underset{f}{f} \text { and } \psi_{n} \downarrow \bar{f} \text { on } X
$$

Where, $\forall x \in[0,1]$, by defrivitiony

$$
f_{-}(x)=\operatorname{dev} \sup \left\{f_{\delta}(x): \delta>0\right\}, f_{\delta}(x)=\operatorname{def} \inf \left\{f(n)=u \in V_{\delta}(x) \cap[0,1]\right.
$$

and

$$
\bar{f}(x)=\operatorname{def}=\operatorname{mf}\left\{f^{\delta}(x): \delta>0\right), f^{\delta}(x)=\operatorname{dut} s \sup \left\{f(x)=u \in V_{J}(x),[0,1]\right\}
$$

Indeed, let $x_{0} \in X$. Then, $\forall n, x_{0} \in \operatorname{int}\left(I_{i^{\prime}}^{(n)}\right)$
for some $\left.i^{\prime} \in\left\{1,2, \cdots 2^{n}\right\}\right)$; take $\delta>0$ s.t. $V_{\delta}\left(x_{6}\right) \subseteq I_{i}^{(n)}$, Notetran that $f^{\delta}\left(x_{0}\right):=\sup \left\{f(x): x \in V_{g}\left(x_{0}\right)\right\} \leqslant M_{i}^{(n)}=\psi_{n}\left(x_{0}\right)$ and it follows than $f\left(x_{0}\right)\left(=\inf _{\gamma \rightarrow 0} f^{\gamma}\left(x_{0}\right)\right) \leqslant f^{\delta}\left(x_{0}\right) \leqslant \psi_{n}\left(x_{0}\right)$. Thus we arrive at

$$
\bar{f}\left(x_{0}\right) \leqslant \psi_{n}\left(x_{0}\right), \forall n \in \mathbb{N} .
$$

50

$$
\begin{equation*}
\bar{f}\left(x_{0}\right) \leqslant \inf \left\{\psi_{n}\left(x_{0}\right): n \in \mathbb{N}\right\} \tag{*}
\end{equation*}
$$

Conversely, $\forall \delta>0, \exists$ some $n \in \mathbb{N}$ sot. $\frac{1}{2^{n}}<\delta$
For tans $n, x_{0} \in \operatorname{ain}\left(I_{i}^{(n)}\right)$ for some i as
before. For these n and i one has

$$
I_{i}^{(n)} \subseteq V_{\delta}\left(x_{0}\right)
$$

Cbecmus

$$
\left.\left|x-x_{0}\right| \leqslant l\left(I_{i}^{(n)}\right)=\frac{1}{2^{n}}<\delta \quad \forall x \in I_{i}^{(n)}\right) .
$$

Therefore

$$
\sup \left\{f(x): x \in I_{i}^{(n)}\right\} \leqslant \sup \left\{f(x), x \in V_{\delta}\left(x_{0}\right)\right\}
$$

ie.

$$
\psi_{n}\left(x_{0}\right)=M_{i^{i}}^{(n)} \leqslant f^{\delta}\left(x_{0}\right)
$$

This applies that
Since $\delta>0$ is arbitron, this ingolies

$$
\text { inf }\left\{\psi_{k}\left(x_{0}\right): k=1,2, \cdots\right\} \leqslant \bar{f}\left(x_{0}\right)
$$

(so equal by the earlier (*).

